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The reaction of glyoxime (4) and hydroxylamine hydrochloride in aqueous sodium hydroxide was found
to be a safe and inexpensive method for the preparation of multigram quantities of diaminoglyoxime (5).
Potassium hydroxide mediated dehydration of 5 furnished diaminofurazan (1) in good yield of exceptional
purity. The ready availability of 1 and 5 has facilitated the synthesis of new energetic furazan derivative 8.
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During the course of recent studies directed toward the
synthesis of new energetic materials, the furazan ring has
been found to be a useful substructure for the design of
new high density, high energy materials composed exclu-
sively of carbon, hydrogen, nitrogen and oxygen atoms
[1]. The diaminofurazan (1) has been shown to be a useful
precursor for the construction of high energy furazan
derivatives 2 and 3 [2,3]. However, the preparation of 1
has been limited by the availability of the precursor
diaminoglyoxime (5). There are several reports in the liter-
ature which describe methods for the synthesis of 5 [4-8].
However, these procedures require the use of obscure
starting materials and hazardous or expensive reagents.
Herein we wish to report a facile inexpensive method for
the multigram synthesis of 5 and 1. In addition, the avail-
ability of useful quantities of these intermediates has facil-
itated the synthesis of a new energetic furazan derivative.
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Results and Discussion.

As illustrated in Scheme 1, the synthesis of 1 was
achieved in two steps from readily available glyoxime (4)
[8]. The key intermediate 5 was prepared from the reac-
tion of 4 and hydroxylamine hydrochloride in an alkaline
aqueous sodium hydroxide solution at 90°. This conver-
sion, originally described without experimental details in
a Russian patent, afforded 5 in 60% yield [9]. This proce-
dure represents an improvement over the methods previ-

ously reported in that it avoids the use of cyanogen gas
and 5 can be obtained from commercially available
reagents in good yield at low cost.

The generation of furazan from the dehydration of gly-
oxime (4) at elevated temperatures in aqueous sodium
hydroxide has been known for nearly a century [10].
However, the efficient dehydration of § in aqueous
sodium hydroxide has been shown to require higher tem-
peratures in a sealed reaction vessel [11,12]. In this study
it was found that a simple stainless steel reactor could be
employed to safely and easily perform the dehydration
reaction of 5 on a multigram scale to furnish 1. Both
sodium hydroxide and potassium hydroxide were found to
effect the dehydration reaction; however, potassium
hydroxide routinely furnished 1 in high yield (>70%) in a
state of exceptionally high purity (Scheme 1).
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Reagents: i) NH;OH*HCl, NaOH (aq), 60°C.
ii) KOH (aq), 170°C, stainless steel reactor.

With the 1 in hand, attention turned toward the synthe-
sis of new high density energetic compounds. Based on
the detonation performance of the furazan derivatives 2
and 3 [2,3], previously synthesized in these laboratories,
the 5,5'-[methanedinitramino-bis(1,2,5-oxadiazol-4,3-
diylJbis[1H-[1,2,3]triazolo[4,5-c][1,2,5]oxadiazolium]bis-
(inner salt) (8) was viewed as an attractive synthetic tar-
get. Excellent calculated density (d) and detonation prop-
erties [detonation velocity (D) and detonation pressure
(Pcy)] suggested that 8 could be useful as a new solid
state explosive or propellant (Scheme 2) [13].

As illustrated in Scheme 2, the synthesis of 8 proceeded
from 1 through the intermediate 5-(4-amino-1,2,5-oxadia-
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Scheme 2

d =1.81 g/em?
D =8.54 mm/sec
Py = 340 kbar

E

d=1.90 g/em?
D =9.25 mm/jisec
Pcy = 407 kbar

Reagents: i) See conditions cited in Reference 3. ii) 37% H,CO, HC], 100°C.
iif) 100% HNOs, Acy0, -5° to 15°C.

zol-3-yl)-1H-[1,2,3]triazolo[4,5-c][1,2,5]oxadiazolium
inner salt (6). Compound 6 was prepared from 1 using a
two step procedure previously reported [3]. Condensation
of 6 with formaldehyde furnished the 5,5'-[methanedi-
amino-bis(1,2,5-oxadiazol-4,3-diyl)]bis[1H-[1,2,3]tria-
zolo[4,5-c][1,2,5]oxadiazolium]-bis(inner salt) (7) in 90%
yield. Compound 7 was calculated to possess fair detona-
tion properties and a density of 1.81 g/cm3. The com-
pound was found to be thermally stable above 200° and
shock insensitive (no detonation with a hammer blow).
The N-nitration of the amine nitrogen atoms to give 8
was achieved in a mixture of 100% nitric acid and acetic
anhydride. This provided 8 in 97% yield as a colorless
amorphous solid. As expected the detonation properties of
8 were greatly enhanced over those of 7. Compound 8 was
found to be an impact sensitive material which exploded
violently with flame when struck by a hammer. In addi-
tion, the thermal stability of 8 was found to be less than
that observed for 7 and furazan derivatives 2 and 3 [2,3].
In summary, diaminofurazan (1) has again been shown
to be a useful precursor for the synthesis of energetic
compounds. With a convenient and inexpensive prepara-
tion of 5 and 1 now available, large-scale synthesis of
furazan derivatives are now economically feasible. In
addition, the ready availability of 1 should lead to the
development of new furazan based compounds.
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EXPERIMENTAL

All chemicals were purchased from Aldrich Chemical
Company, Milwaukee, WI. The 'H and 13C nmr spectra were
obtained on a Varian-Gemini Multiprobe 300 MHz nmr spec-
trometer and ir spectra were recorded on a Perkin-Elmer 1600
series infrared spectrometer. Melting points were determined on
a Mel-Temp II and are reported uncorrected. Elemental analyses
were obtained from Galbraith Laboratories, Inc., Knoxville, TN,
and Midwest Micro Lab, Indianapolis, IN. An inexpensive stain-
less steel reactor was made in the Machine Shop at the
University of New Orleans [14]. Caution: Compound 8 should
be treated as dangerously explosive.

Diaminoglyoxime (5).

Aqueous sodium hydroxide (100 ml, 5 M) was added to gly-
oxime (4) (17.6 g, 0.2 mole) and stirred in a 250 ml round bot-
tom flask. Hydroxylamine hydrochloride (27.8 g, 0.4 mole) was
then added in one portion. The flask was fitted with a condenser
and heated in an oil bath (keeping the bath temperature at 90°
for 6 hours). The reaction mixture was allowed to cool to room
temperature and a colorless crystalline solid (needles) precipi-
tated. The isolated solid was washed with cold water (10-15 ml)
and dried to give diaminoglyoxime (5), 14.0 g (60%), mp 203-
205° dec (water), lit mp 203° [6]; 'H nmr (dimethyl sulfoxide-
dg): 8 5.18 (bs, 4H, NH,), 9.76 (s, 2H, OH); 13C nmr (dimethyi
sulfoxide-dg): & 145.2.

Diaminofurazan (1).

A suspension of diaminoglyoxime (5) (23.6 g, 0.2 mole) in
aqueous potassium hydroxide (80 ml, 2 M) was placed in a
stainless steel reactor. The reactor was closed and placed in an
oil bath preheated to 170-180° and maintained at that tempera-
ture for 2 hours. The reactor was cooled by immersion in an ice
bath for 2 hours and opened in a hood to avoid contact with
trace amounts of ammonia as it escaped. The mixture was
removed by washing the chamber with water (2 x 20 ml) and fil-
tered to give 1 as colorless needles, 14.1 g (70%), mp 179-180°,
lit mp 180° [11]; ir (potassium bromide): 3423, 3318, 1647,
1591, 1353 cm-!; 'H nmr (dimethyl sulfoxide-dg): 8 5.81 (bs,
4H, NH,); 13C nmr (dimethyl sulfoxide-dg): & 149.7.

5,5'-[Methanediamino-bis(1,2,5-oxadiazol-4,3-diyl)]bis[1H-
[1,2,3]triazolo[4,5-c][1,2,5]oxadiazolium]-bis(innersalt) (7).

To a suspension of 6 (1.0 g, 5.2 mmoles) in water (20 ml), an
aqueous solution of formaldehyde (37%, 0.2 g, 2.6 mmoles) and
3 drops of hydrochloric acid (12 M) were added and the mixture
refluxed for 2 hours. The mixture was then cooled and filtered to
furnish a yellow solid which was washed with cold water and
dried under vacuum to give 7, 0.94 g (90%), mp 244-245° dec
(DMF/water); ir (potassium bromide): 3410, 1618, 1572, 1046,
1202 cm~!; 'H nmr (dimethyl sulfoxide-dg): 8 5.09 (bs, 2H,
CH,), 7.89 (bs, 2H, NH); 13C nmr (dimethyl sulfoxide-dg): &
165.4, 150.6, 145.3, 53 8.

Anal. Caled. for CgH4N;O4: C, 27.01; H, 1.01; N, 55.99.
Found: C, 26.91; H, 1.08; N, 55.73.

5, 5'-[Methanedinitramino-bis(1,2,5-oxadiazol-4,3-diyl)]bis[ 1H-
[1,2,3]triazolo[4,5-c][1,2,5]oxadiazolium]-bis(innersalt) (8).

To a solution of 100% nitric acid (1.5 g) and acetic anhydride
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(1.0 g) at 0° was added 7 (1.0 g, 2.5 mmoles) in one portion. The
reaction mixture was stirred for 30 minutes then allowed to
warm to 10-15° with continued stirring for 30 minutes. The mix-
ture was then poured onto crushed ice (100 g). A colorless pre-
cipitate was collected and washed with cold water to give 8, 1.2
g (97%), mp 160° dec (dichloromethane); ir (potassium bro-
mide): 1608, 1282, 1103, 1038; 1H nmr (dimethyl sulfoxide-dg):
8 7.10 (s, 2H, CH,); 13C nmr (dimethyl sulfoxide-dg): & 166.9,
151.4, 147.0, 67.2.

Anal. Caled. for CgH,N;g0g: C, 22.05; H, 0.41; N, 51.43.
Found: C, 21.97; H, 0.42; N, 51.28.
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